周朝有多少年 周朝建立了多少年
2023-01-30
更新時間:2022-08-14 11:26:34作者:未知
《幾何原本》的影響和意義
《幾何原本》在幾何學(xué)上的影響和意義
在幾何學(xué)發(fā)展的歷史中,歐幾里得的《幾何原本》起了重大的歷史作用。這種作用歸結(jié)到一點,就是提出了幾何學(xué)的“根據(jù)”和它的邏輯結(jié)構(gòu)的問題。在他寫的《幾何原本》中,就是用邏輯的鏈子由此及彼的展開全部幾何學(xué),這項工作,前人未曾作到。
《幾何原本》的誕生,標(biāo)志著幾何學(xué)已成為一個有著比較嚴(yán)密的理論系統(tǒng)和科學(xué)方法的學(xué)科。并且《幾何原本》中的命題1.47,證明了在西方是歐幾里得最先發(fā)現(xiàn)的勾股定理,從而說明了歐洲是西方最早發(fā)現(xiàn)勾股定理的大洲。
《幾何原本》在論證方法上的影響
關(guān)于幾何論證的方法,歐幾里得提出了分析法、綜合法和歸謬法。所謂分析法就是先假設(shè)所要求的已經(jīng)得到了,分析這時候成立的條件,由此達(dá)到證明的步驟;綜合法是從以前證明過的事實開始,逐步的導(dǎo)出要證明的事項。
歸謬法是在保留命題的假設(shè)下,否定結(jié)論,從結(jié)論的反面出發(fā),由此導(dǎo)出和已證明過的事實相矛盾或和已知條件相矛盾的結(jié)果,從而證實原來命題的結(jié)論是正確的,也稱作反證法。
《幾何原本》作為教材的影響
從歐幾里得發(fā)表《幾何原本》到如今,已經(jīng)過去了兩千多年,盡管科學(xué)技術(shù)日新月異,由于歐氏幾何具有鮮明的直觀性和有著嚴(yán)密的邏輯演繹方法相結(jié)合的特點,在長期的實踐中表明,它巳成為培養(yǎng)、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學(xué)家從學(xué)習(xí)幾何中得到益處,從而作出了偉大的貢獻(xiàn)。
少年時代的牛頓在劍橋大學(xué)附近的夜店里買了一本《幾何原本》,開始他認(rèn)為這本書的內(nèi)容沒有超出常識范圍,因而并沒有認(rèn)真地去讀它,而對笛卡兒的“坐標(biāo)幾何”很感興趣而專心攻讀。
后來,牛頓于1664年4月在參加特列臺獎學(xué)金考試的時候遭到落選,當(dāng)時的考官巴羅博士對他說:“因為你的幾何基礎(chǔ)知識太貧乏,無論怎樣用功也是不行的。”這席談話對牛頓的震動很大。于是,牛頓又重新把《幾何原本》從頭到尾地反復(fù)進(jìn)行了深入鉆研,為以后的科學(xué)工作打下了堅實的數(shù)學(xué)基礎(chǔ)。
《幾何原本》的缺憾
但是,在人類認(rèn)識的長河中,無論怎樣高明的前輩和名家,都不可能把問題全部解決。由于歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學(xué)的“根據(jù)”問題并沒有得到徹底的解決,他的理論體系并不是完美無缺的。
比如,對直線的定義實際上是用一個未知的定義來解釋另一個未知的定義,這樣的定義不可能在邏輯推理中起什么作用。又如,歐幾里得在邏輯推理中使用了“連續(xù)”的概念,但是在《幾何原本》中從未提到過這個概念。
有些被歐幾里得作為不證自明的公理,卻難以自明。比如“第五平行公設(shè)”,歐幾里得在《幾何原本》一書中斷言:“通過已知直線外一已知點,能作且僅能作一條直線與已知直線平行?!?/p>
這個結(jié)果在普通平面當(dāng)中尚能夠得到經(jīng)驗的印證,那么在無處不在的閉合球面之中(地球就是個大曲面)這個平行公理卻是不成立的。俄國人羅伯切夫斯基和德國人黎曼由此創(chuàng)立了非歐幾何學(xué)。